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INTRODUCTION

Neurons are brain cells. There are approximately ten billion (10'0) brain cells of
varying types in the human brain. These are interconnected by axons and dendrites,
the axon being the output fiber of a neuron which branches off into dendrites which in
turn connect to other neurons. A typical structure is shown in figure 1. The intercon-
nectivity can be quite dense with one neuron receiving inputs from up to thousands of
others. The action of the neuron is to generate an electrical pulse or pulse train if the
summation of its inputs exceeds a threshold associated with a particular neuron. The
collection is thus similar to a vast highly interconnected network of threshold elements.
It is this network which constitutes the human thinking machine.

This thinking machine has capabilities that, to date, have frustrated duplication by
large scale digital computers. These capabilities are not in the area of esoteric high
level mathematics but in what are generally considered simple normal processes, that is
processes that could be performed even by chiidren. As an example consider the
children’s puzzie shown in figure 2. A picture is given and scattered throughout the
picture are a certain number of given objects. The goal is to find all these objects. Now
imagine programming a computer to do the same task. Assuming the picture to be
black on white it could be presented to the computer as a rectangular array of pixels
that are either activated or not with a resolution compatible with the scene and objects
being represented. Algorithms must now be devised that can recognize the sought for
objects regardless of their locations in the scene, their orientations or sizes. It must also
be able to recognize them if they are partly obscured. It must perform this recognition
while ignoring other objects and separating them from the desired objects. A child can
do this without much trouble. A program to do this, if it could be written, would probably
be very large, slow, and fragile. The difficulty in writing such programs arises from the
fact that we really don’'t know how we do the recognition process. We don’t know how
the brain does it. Recognition of voices over the telephone is another example. Even
with poor connections there are usually a number of voices that we can immediately
recognize over the phone. Yet if we were asked to write out the steps how this recogni-
tion was made, that is, the recognition algorithm that could be used by somebody else,
most would admit defeat while the remainder would probably become embroiled in
Fourier analysis, linguistics analysis, information theory, etc. Again the fact is that we
don't know how the recognition is made, how the brain does it.

The children’s puzzle referred to could be considered a target recognition problem
where now the desired objects are tactical targets in a military environment that are
being sought by some fire control system. Or it could be considered the scene pre-
sented to a robot which must move to the desired objects and collect them. In other
words this is a problem of strategic pertinence. There is thus more than just scientific
curiosity to motivate research into how the brain works and how it solves such




problems. Conventional computing techniques are based on sequential operation. The
algorithm is constructed as a list of steps that are to be executed sequentially. A ma-
chine that performs these sequential operations is referred to generically as a Von
Neumann machine after the mathematician who introduced the stored program concept
in digital computer design. The networks in the brain however are highly parallel.
Instead of one sophisticated central process unit (CPU) working sequentially we have,
or seem to have, billions of relatively unsophisticated CPU’s - the neurons - working for
the most part in parallel fashion. And somehow this parallel arrangement has a power
that can't be approached by the conventional Von Neumann machine.

A field of research has grown directed to understanding and exploiting the power
of brain-iike neural nets. The physiological neurons are replaced by relatively simple
threshold elements together with a specified or random interconnection topology. The
interconnections do not usually, if ever, retain the physiological characteristics of axons
or dendrites but are lossless, instantaneous transmission lines which can, however,
weight or modify by a constant multiplier the signal being transmitted. (Sometimes a
delay is introduced. And sometimes a degree of physiological realism is introduced as
for example, a refractory period. For the most part however the abstraction is rather
severe.) Thus from the structures of the brain is abstracted, via Occams razor, net-
works that are referred to as synthetic neural networks, artificial neural networks or -
when it is understood that the physiology is not relevant - simply as neural networks.
Such simplified networks can be arranged to exhibit learning, pattern recognition,
control, problem solving, and other activities reminiscent of human behavior. The trick
however is in the arranging of the model or how it is constructed. A great deal of re-
search has been and is being spent to develop models that are versatile, robust, fast,
and reliable. A number of diverse disciplines are involved in this research such as
psychology, biology, mathematics, computer science, physics, and engineering. At
least three journals are now devoted to the subject, such as IEEE Transactions on
Neural Networks, Neural Networks, and Neural Computation. In September and Oc-
tober 1990 the Proceedings of the IEEE were devoted exclusively to the subject. Many
other journals regularly publish papers on the subject.

In February 1990 an ILIR was authorized to review the current status of neural
networks technology with particular attention to its use in vision systems for automatic
target recognition (ATR) and robotic systems. The results of that review are summa-
rized in this report.




HISTORY

Work on artificial neurons can be traced back to the late 1930’s and early 1940’s
in the work of N. Rashevsky and his colleagues, notably Landahl and Householder (refs
1 and 2). Their work has not motivated by physiological realism - as they admit - but
instead was concerned with the capabilities of idealized networks describes by linear
first order differential equations. They were able to show by such methods that a
number of psychological functions could be simulated.

At about the same time McCulloch and Pitts (ref 3) were developing the model of
neural nets as logic nets with the neurons as all or nothing logical devices. This was felt
to be a representation that was much closer to the biological networks. In fact it seems
to have discouraged the Rashevsky group from proceeding with their differential equa-
tion modeis on the ground that they were too unrealistic. The McCulloch-Pitts model
showed promise for a while. It was shown mathematically by Kleene (refs 4 and 5) that
it was capable of representing a very wide variety of events and into the 1950's a great
deal of research was spent in exploring the capabilities ot such models. But then
progress dropped rapidly. Among the reasons given for the failure of the McCulloch-
Pitts approach to a realistic model were (ref 6); a full knowledge of input-output relations
which is required but is not available for any biological species; a precision of connec-
tion is required which is not present in the brain; the number of neurons often exceeds
those in actual nervous systems; there was no adaptive behavior; and a nonvolatile
memory seemed o be impossible in such a model.

In the late 1950's a new phase of neural network research started with the formu-
lation of F. Rosenblatt of neural nets he called perceptrons (ref 6). These were neural
nets wherein the neurons were threshold elements and if the sum of the inputs exceed
a threshold associated with that neuron then the neuron would switch its state. Each
input line to the neuron has a weight associated with it that corresponds to synaptic
efficiency. These weights would be initially set to random values and then adjusted
during a training period. Effectively, these networks learned to classify the present
inputs. Moreover, Rosenblatt was able to prove mathematically that if a set of weights
existed for a given classification of inputs then the training procedure would converge to
a set of weights in a finite number of steps that will allow the perceptron to make the
same classification. (This will be presented in more detail in the next section.) This
proof was for a particular type of perceptron. Much interest was generated by
Rosenblatt's work and many investigators became involved in perceptron-type re-
search. It was found however that while there were some problems the perceptron did
very well with, there were many others that it didn't and no one knew why. Then in
1969 Minsky and Papert published their study of perceptrons (ref 7) in which they
showed the limitations of perceptrons, tundamental limitations as it turned out. This
work is accused by some of stifling further research in this area although the authors
disagree.




At the same time Rosenblatt and his colleagues were developing the perceptron,
Widrow and his colleagues were developing a similar type of neural net that used a
least-mean-squares algorithm for adjusting the weights (refs 8 and 9). Their work was
directed elsewhere however when they met with a lack of success in devising methods
for training multilayer networks which are required for most problems. This was essen-
tially the same problem that the perceptron investigators encountered.

The 1970's were a time of relative inactivity for neural networks although some
significant research was done. Werbos in 1974 (ref 10) developed a method whereby
muiltilayer nets could be trained, a problem which has proved frustrating to the develop-
ment of the perceptron and Madeline (the name associated with the nets of Widrow, et
al.) His work however was to be unknown to the scientific community until the 1980's
when it was discovered. Also at this time Grossberg (ref 11) and Fukushima (ref 12)
were developing models that involved feedback and new types of elements into the
neural net. Both continued their research and development in the 1980’s.

The field was rejuvenated in the 1980's with the rediscovery of Werbos's method
by Rumelhart, Hinton, and Williams (ref 13). The method was now called the method of
backpropagation. Currently this is the most popular method in neural network activities
but it is not without it critics. A 1988 edition of the Minsky-Papert book (ref 7) includes a
critique of the method. Its major shortcoming is that it is essentially an optimization
technique that is subject to the trap of local extrema. Also it can be very slow in con-
verging. Much of the more recent work in neural networks has been devoted to the
search fcr methods to eliminate or reduce these shortcomings of the backpropagation
method. To avoid hangups at local extrema the so-called simulated annealing method
(ref 14) has been introduced which effectively, on a probabilistic basis, allows the
search for an extrema to start in a coarse manner, with even some steps away from the
extrema, and then to gradually refine the search. Methods of speeding up convergence
are discussed by Werpbos in his 1990 article (ref 15).

In 1986 Minsky (ref 16) proposed a different approach which he referred to as a
society of mind. Rather than going to ever more complicated networks such as elabo-
rate multilayer perceptrons with backpropagation or the feedback structures of
Grossberg or Fukushima he raised the possibility of going to simpler structures. An
organization of such simple structures would then be managed to perform the task at
hand. While his book does not get down to the neuronal level it is persuasive in its
illustrations of how various mind-like behaviors can be reduced to the operations of a
group or society of simple components. The approach could be called psychological in
the way it goes from behavior to components that could account for such behavior. No
implementations or simulations are presented so that much remains to be done with
these concepts.




Another different approach was made in 1987 by Edeiman (ref 17) with his theory
of neuronal group selection which he called neural darwinism. Most, if not all, ap-
proaches to the brain problem treat it as a computer or information processor of some
kind. To quote from Edelman and his colleagues (ref 18), "The understanding of brain
function is widely viewed as requiring an abstract approach based on theories of infor-
mation, logic, computation, and cybernetic control. We present . . . an analysis which
suggests that the application of many of these abstract principles to animal behavior is
inconsistent with what is known about the nervous system . . . As biologists we empha-
size that a computational formalism applied in isolation to behavior can give only a very
incomplete and potentially misleading picture of the nature of mind." Whereas the
society of mind approach is a top down approach, neural darwinism is a bottom up
approach proceeding from very detailed physiological analysis. It has similarities to
Minsky's ideas that it considers organizations of networks rather than one general
network. Computer models have been developed of increasing degrees of sophistica-
tion, the Darwin |, Darwin I, and Darwin Ill programs. Edelman’s theory and presenta-
tion of it are quite difficult however and do not seem to have reached an audience in the
engineering community. The publication of reference 18 in an engineering journal may
change this and the neural network community may become more interested in his
work.

The above history has not mentioned a number of contributions to this subject.
This is because the purpose was not to give a detailed history but rather a general
history that will convey the overall picture ot the activity in a modest space. More detail
may be found in the references.

EXAMPLES OF NEURAL NETWORKS

The Perceptron

An example of a simple neural net is shown in figure 3. There are two variable
inputs, x, and x,. There is one constant 8. The inputs can be analog. Associated with

the variable inputs x, and x, are the weights w, and w,. Associated with the input 6,
called the threshold, is the weight -1. The circle represents the neuron function f where

y = Hw,x, + W,X,, - 8)

and




and is referred to as a hard limiter. The equation
WX, + WX, =8

is the equation of a straight line in the x, - x, plane as illustrated in figure 4 with slope
-w,/w, and x, - intercept 8/w,. If input values x,, x, are such that
0 Xywy

> - —— - >
x2_W2 W Or W, X, + W,X, 620

then
y=1

otherwise y = -1. Thus this network classifies a point (x,, x,) into one of the two catego-

ries divided by the straight line. In this sense it recognizes the input. |f there were n
inputs we would have

y =Hw X, + WX, + ...+ WX -0)

The expression in the parentheses now represents a hyperplane in n-space which
divides the n-space into two categories. If the input n-dimensional point is on one side
of the hyperplane the output polarity is plus. If it is on the other side the output is
negative.

What a perceptron does is to start with arbitrary (random) values for the w, and 8
and by training adjust the w. so that the network learns to properly classify the input.
The training proceeds as follows:

A set of training points x” = (x,”, x,”, ..., x ¥ is made available. Some of these
points are in region A and the rest are in region B where A and B are separated by a
hyperplane. If a point is in regior A the output is to be +1 and if it is in B it is to be -1.
When an x” is presented to the net the output will be plus or minus one. If x"¢A and
the output is positive the response is correct and no adjustment is required. If the
response is negative however the response is incorrect and the weights are adjusted in
accordance with

wit+A) =wt)+x” i=1,2..n




Similarly if the output is supposed to be negative, 5‘” € B, and instead it is positive then
adjustment is

wit+a)=wt)-x"i=1,2..n

The training consists of repeating this process for ail the training points over and over
until no mistakes are made, i.e., it has converged.

Rosenblatt was able to show (ref 6) that if the sets A and B are separable by a
hyperplane then the above process will converge in a finite number of steps. In other
words if a solution exists then the training process will find a solution though nct neces-
sarily the same one. Depending on the data used the separating plane that it is con-
verged to could be displaced a bit from the one guaranteeing existence.

Since it is one of the few things of consequence in neural network theory that can
be proved and since the proof is simple it will be presented here to illustrate the concept
of perceptron convergence.

We consider a single layer perception as shown in figure 3 but with n inputs, that

is it accepts vector inputs 5“’ where the 5“’ have n components. Thus we have n
weights w , w,,....w_and a threshold 6. We will use the inner product notation

W ws = w Pw O pw O Oy P O
—_ T 1 1 2 2 n n
The classification will be binary which means the input vector space is to be divided into
two parts A and B and the perceptron is to be trained to recognize the vectors which are
in A. Let us take the threshold to be zero, i.e., 6 = 0. Then the training procedure is as
follows.

Initialize w to an arbitrary one of the vectors x, i.e., let

ﬂw) _ 5(i)

where the x are the training vectors. Let the first vector presented to the perceptron be
x". We know if this vector belongs to A or B. If x" € Aand y = 1 this is a correct re-
sponse and we proceed to the next input vector. If x" € A andy = -1 this is an incorrect
response and we make the substitution

wie—wi+xl' i=1,2,...n




and proceed to the next vector. If x" € B and y = -1 this is a correct response. If x € B
and y = + 1 the response is incorrect and the w, are updated to

W.ew, - xi' i=1,2,...n

and the next vector is input.

This procedure can be simplified by changing the sign of the vectors belonging to
B. Thatis, if X" € B we make the replacement

Then we only have to make the test
<w x¥>>0

and, if required,

k
wew + x"

We further simplify by letting the x” be unit vectors.

The theorem then states the following: if there exists a unit vector w* anda 6 > 0
such that for all

W' X>>0

then w will be updated only a finite number of times by the above procedure. Put
another way, if V_V_(O) is the initial weight vector and _v!1 yv_z..., the sequence of updated

weights then there exists M such that after EM no further changes are made in w, it has
converged.

We follow here the proof of Minsky and Papert (ref 7). A similar proof has been
gi. by Novikoff (ref 19).




Let

because, since |w*| = 1, this is just the cosine of the angle between w* and !v_“’.

Consider now the sequence of <w*w" > remembering that the w" involved are
only those arising in an update since otherwise no change was made in w.

<W'W>S=<Ww*' W +x'>=<w WS> +<w*' x'>><w* w’>+38

W WS =<W*' W + XS =<W*' WS+ X>><w* W>+25

<w*wWV> > <wr w®> + N§ = NS,

so that the numerator of G increases linearly with the number of corrections to the
weighting vector w.

For the denominator consider the sequence of
W' =<w' w'>=<w® +x' W +x'>
=[wOP +2<w® x'> +|x'F <|wOF +1
since <W°’ x' > < 0. Similarly

w2 P =<' + 22w +x2> =w' 4 2<w! 2> +[x2f <[ wl[ +1

WP <N
Thus

G(w") > N&/VN




Since
G(w) <1
it follows that
WNS<1

or

N < 1/5°

so that the number of corrections is bounded. The process converges.

A division of the x, -x, plane that is not separable (although it is easy to set up a

neural network for it) is shown in figure 5. A neural network that will perform the clas-
sification is shown in figure 6. This is an example of a 2-layer network or perceptron. It
can be seen that it consists of three duplicates of the figure 3 network, one for each side
of the triangular region. The last neuron will fire and generate a +1 only if all three
preceding neurons are generating +1's.

It follows simply from this how a three-layer network would arise. In figure 7 the
region A consists of two disjoint sets. Thus for each one a network as in figure 8 is
required. The last layer is then a single neuron which fires if either one of the preceding
neurons fire.

For binary inputs, i.e., x = =1, the geometry reduces to discrete points which can
be taken as the vertices of n-dimensional cubes. In figure 9 this is shown for the x, -x,

plane. It is obvious from this figure and the preceding discussion how a network would
require two layers to perform an exclusive OR function. The points (1,-1) and (-1,1)
must be separated from the others and this requires two lines. A possibility is shown in
the figure.

Backpropagation
A few words about gradient or steepest descent methods will be useful preliminary

to the method of backpropagation for neural nets. More details can be found in refer-
ence 20.
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We consider a function of n variables

f(X) Xo0eey X))
which we wish to minimize by varying the x. in some systematic manner. (It is assumed

that for one reason or another the process of solving the set of simultaneous nonlinear
equations

is impractical.) The x, may be thought of as functions of time, x(t), such that
X (1), X,(t),.... X (t)

represents a curve in n-dimensional euclidean space. Of all the possible curves the
one of fastest change is sought for, i.e., a curve of steepest descent. We can also
parameterize this curve by it's arc length s and consider x, as x(s). Starting at some

arbitrary point p = (x,%, x,’,..., x °) we lett and s = 0. Then arc length will be measured

relative to this point as t increases. We have

in analogy with two- and three-dimensional spaces.

Now

Since

dx _dx dt _d & (ax YT
X| - X| t X| X,
ds ~ dt ds ~ / [Z( ):]

we may write

df I d s (dx ¥
[s Xi Xi
=,Z1a“ dt /[,; (_tl):]




Let the dx/dt be denoted u. Now we wish to find a curve such that the rate of change
along this curve, df/ds, will be a maximum. That is, we wish to solve

o ( df ,
aii(ag)zo,l=1,2 ..... n

for the u. This solution specifies differential equations for the curve. Carrying this
through gives

of 1/2 oA rld ) 2 4 n 5 372 n AR
T IZ ;T 1/[2 UK] =% [EIUK] ] [;?K] 2u, E; OXj Ui
which reduces to

n noof
XiKz;‘u ;a

or
% = a% i=1,2,...,n
[
where
n 2 of dXK
o= Db/ 2o d

is not a function of the index i. Thus the direction of steepest descent (or ascent) as
given by the dxi/dt is proportional to the gradient of t.

To illustrate backpropagation as simply as possible consider the network shown in

figure 10. During the training session we have associated with each input vector x =
(x,. x,) the desired output vector y = (y1,y2) . Then we can define an error

12




This is now the function we wish to minimize as a function of the weights. The inde-
pendent variables are the weights W, Therefore we require the derivatives (gradient)

oE =aE an _(._9.)ayi
aw, = dy, awy =01 " H)aw,

The last differential requires the y’'s to be differentiable functions of their inputs so that

the hard limiter used previously will no longer suffice. For this reason the sigmoid
function s(x) is introduced as

s(x) = 1/(1 +€7)

which is, approximately, 1 when x>>0 and 0 when x<<0. The derivative of this function
is given by

ds £
a—i = —(T':’E—x)—g‘ =S(1 ‘S)

We can now write
y, = s(w”x1 + Wasz) = s(sumi)
SUM, = W X, + W, X,

so that

dy; _ 9ds  dsumy _ ,
dw; = dsum, ow; - SU 7SI

to give

S5 =0 Ji)s(1 - s)x

as the gradient term. The differential equation for the weight change is then propor-
tional to this.

gi = oy - ¥i)s(1 - s)xi = auyx
where
8 = (yj - yi)s(1-s)

13




In discrete form

wi,.(t +At)=w.(t) + Ata 8jxi

ij
Lumping Ata together as one proportionality term B gives the w, corrections as
w(t+At) = wii(t) + Bﬁixi

Consider now an additional layer as shown in figure 11. We now require addi-
tional sensitivities -or gradients - for the w; terms. Take as a specific case

oE _ oE OY1 oE DYQ _ -\ dy, ~ .\ dy?
Wi, = 3yy awi T ays awgy = WY g + 2 - Y2 g

Since
y, = s[yjwii +yswa] = s(sum;)
dyi dyi
av\){;', = s(sum;)[1 - s(sumi)lwﬁg‘z,’—i‘1
Since

Y1 = S(Wi1 Xy + W31 X2) = s(sum;)

v
Fv)\% = s(sum;) 1 - s(sumj)] x;

The gradient can be written

—;)?NE;, = (Y1 -j1)5(sum1)[1 - 5(sumy) | wi s(sumi) [1 - s(sumi)| x,

—~—

o

1

+ (Y2 - Y2) S(sump) [1 - s(sumg) ] wiz2s(sum;) | 1 - s(sum;)| x4

~ e
~

)

2

= (8,w,, + 3,w,,)s(sum)[1 - s(sum)]x,

14




This gives in discrete form for the correction to wi,
Wit (t+ At) = Wiy (1) + B[S W11 + S2wiz] S(SUM)) [1 - s(sumi)] xq

The corrections for wiz, w3y, wi> would be found in a similar manner. This illus-
trates how propagation is made back into the network layer by layer. If a third layer was
added, say with weights w;", then the chain of partial derivatives would be extended in a
similar manner to include these terms.

The Adaptive Resonance Model

The proceeding examples were based on supervised learning. That is, the train-
ing required an element external to the network that controlled the adjustment of the
weights depending on the correctness of the response. A classification of inputs was
established before the training and then this predetermined classification was taught to
the network by systematically adjusting the weights. A number of models have been
developed which do not use a predetermined classification and are referred as unsuper-
vised learning models. The adaptive resonance model of S. Grossberg, more specifi-
cally the ART1 model, which is for binary input shall be discussed here.

Let the inputs be n-component binary vectors x = (x,, X,,..., X ) where x is either 0
or 1. Let the output be an M-component vector y = (y,,..., y,,) which is also binary. This
will be capable of an M-way classification if for each of M different inputs one y, of the M

y-components is 1 and the others are zero. Let x* be the first of a sequence of input
vectors. And let the y response be y’ = (1, 0, O,..., 0). Associated with each of the
output nodes is a summer

n
M= iZ=1Wij X;
where w, is the line weight from input i to the summer for output node j. Initially

w.=1/(1 +n) j#1

ij
n
W“ = X{/[-S + Z X{]
i=1
We have
W, 2w orw =0
j it

i1
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In other words the lines for the x° classification have the weights enhanced to reflect
that particular input. [f the same vector is presented again and the pi calculated, i =
1,...,Mthen

H,> W i1

so that node 1 is selected. Now let another vector 52, 52 # _)5', be presented as input. If
upon calculating the p. i, turns out to be greater than the rest then this would have to be

s 1 . . .
put into the same category as x . If p, is not the maximum then all the other p. will be

the same and the second node can be taken as the new category and the weighting on
the lines to this node enhanced accordingly. And we can proceed in this manner until
there is no further variation in the input, or the output nodes are exhausted.

For some input distributions this procedure works fine. Unfortunately there are
many input distributions where it doesn’t. The learning is unstable. As Carpenter and
Grossberg (ref 21) put it, "... the networks adaptability, or plasticity, enables prior learn-
ing to be washed away by more recent learning in response to a wide variety of input
environments." To overcome this problem they introduced the theory of adaptive
resonance to building into the competitive learning process a self-regulating control
structure for stability and efficiency. This introduces feedback into the network.

The feedback involves a comparison of input and output and an action based on
this comparison. Now the output is an excited node. This had been excited by a par-
ticular pattern which can be remembered on feedback lines. That is, let there now be
lines from the output node that are weighted to the pattern of the input that excited it.
Figure 12 is an attempt to visualize this. Suppose the input x = (1,0,1) excited y = (1,0).
Then this could be remembered by setting

t,. =11t

0,t 1

1 2= 3=

which is a copy of x. Now suppose another input also excites the same y. Then this
input should be close in some sense to the previous input. Lett = (., t., t ), some-

117 712’ 13
times called the expectation. Then
<ti,x'>/|x'|
is a measure of the match between the input and the expectation. Since the only values
are 0 and 1 it is the fraction of x values that agree with the expectation. If this is above

some prescribed value (usually called the vigilance term) they are said to match.
Otherwise it is @ mismatch. If a mismatch occurs then this node is eliminated from
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consideration and the maximum is sought over all the output nodes except this one. A
match is reterred as a resonant condition between input and expectation and the input
weights, that is the weights on the input side of the network, will be strengthened
accordingly.

The adaptive resonance model, ART1, thus checks input patterns to see if they
are consistent with what has been previously established within some prescribed
tolerance -the vigilance parameter. In this way new patterns will not wipe out what has
been learned but if they are close to a previous pattern they will be incorporated into
that category with perhaps a corresponding expectation adjustment and if they are not
close a new category will be set up provided a node is availabie.

The Neocognitron

This is another example of a network that uses more than just elementary neurons
and feedforward propagation as in the perceptron and the backpropagation models.
The adaptive resonance model used feedback lines for a form of memory and a
vigilance parameter to measure the closeness of patterns. In the neocognitron, as
developed by K. Fukushima (ref 22) different types of neuron models are used. In the
original version there is only feedforward propagation. In a more recent version, de-
scribed in reference 23, feedback is employed. The feedback model is to allow recogni-
tion of patterns that were shifted in position or distorted in shape. These are multilayer
networks that employ unsupervised learning. The feedback model resembles the
adoptive resonance model in the interplay of feedforward and feedback signals but in
the neocognitron the interplay can occur at all layers instead of just the input layer.

There are three types of neurons employed in the neocognitron. The first is for
feature extraction, the second to allow for position errors in the input and the third,
which is inhibitory, is used to enhance the feature selectivity of the first type. How these
neurons are arranged is shown in figure 13 which was adapted from reference 23.

The same types of neurons are used in the feedback paths. Here they are used
however to provide gain controls for the forward flow cells.

EXPERIMENTAL WORK

Because so little can be predicted from theory about the performance of any
particular neural net, simulation is a necessity in the evaluation of proposed modeis.
Even for the perceptron as described earlier it is not known in general how to specify
the number of layers required, the number of neurons per layer, or the thresholds. That
is, in general we will not know the hyperplanes required and how or if they separate the




n-space. For more complicated models, such as those for adaptive resonance and the
neocognitron, even the weak aid of n-dimensional geometry becomes more remote and
insight can be obtained only by running computer simulations.

Grogan and Johnson (ref 24) have made such a study of the ART1 and the
neocognitron models in the recognition of aircraft shapes. For the ART1 study three
aircraft were represented by overhead silhouettes - actually binary signals on a 16 x 16
pixel array. Six output category nodes were used. The vigilance parameter was varied.
The input underwent translation and rotation. The shapes were clean, i.e., there was no
noise. Taken from reference 24 the shapes of the aircraft on the 16 x 16 field are
shown in figure 14.

For a vigiiance factor of 0.9 all three aircraft were recognized (without any transla-
tion or rotation). For a vigilance factor of 0.7 however the three aircraft are categorized
into only two categories, that is, this value was too low for sharp discrimination. This is
the problem with this type of discrimination. A high value is fine for clean images but if
there is some noise then a high value will tend to take noisy patterns as new patterns.
A low value tends to blur the boundaries of the categories. Thus while ART1 is pre-
sented as an example of unsupervised training it most likely will require supervision on
an operators part to select a value of the vigilance parameter that is suitable for the
particular task at hand.

When the input shapes were presented also in translated and rotated positions a
high value (0.9) of the vigilance parameter caused the translated and rotated shapes to
be taken as new patterns. This led to the authors’ conclusion that an ART1 network
should have a preprocessor to make the input pattern invariant to rigid body transforma-
tions. They did not discuss sensitivity to the vigilance parameter other than for the two
values mentioned above.

Also studied in the same report was a neocognitron model. This seems to be the
version without feedback - the authors refer to a multilayer feedforward network. The
same images and sizes were used for the ART1 model. Four cell layers were used.
Training is done layer by layer, that is the input layer is trained first, then the layer
adjacent to this and so on until all the weights have stabilized. The training is of a
competitive type, i.e., winner-take-all. We quote the authors; "Considerable effort was
required to adjust the network parameters to assign unique categories to the three
aircraft and provide some invariance to translation and noise. . .." An further, ". . .even
with our numerous attempts at adjusting the network parameters we were unable to
unique., categorize the shapes the same in both the untranslated and translated im-
ages. . . .it becomes evident that there is a tradeoff in the networks ability to dis-
criminate and to provide translational invariance." The authors conclude, ". . .for the
task of aircraft identification and orientation estimation unsupervised learning does not
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ofter the required performance.” According to Fukushima (ref 23), "The neocognitron
(without feedback) has the ability to recognize stimulus patterns correctly, even if the
patterns are shifted in position or distorted in shape." The apparent conflict here is most
likely an indication of the fine tuning required and the patterns being used.

The above study was based on direct images being presented to the network. An
alternative method is to use model-based techniques. These are techniques wherein
abstract representations of the object are used for characterization. For example the
shape of the aircraft could be considered to be given as a function of two variables by
f(x.y) where the range of f could be binary or analog and the domain the boundary and
interior points. The moments of this function are

mpg = J‘_., J xPy9t(x,y)dxdy

and the feature vector

y=(m  .m_ .m_ .. m_)

can be used to characterize the particular aircraft. Similarly, if the contour is taken as t
he complex function z(t) the characterization may be expressed as Fourier coefficients
given by

F(n) = g- L z(t)e ™™ dt

Other transformations have also been used, e.g., Walsh, Fourier-Merllin. (Taking mo-
ments of course can also be considered a transformation.) The use of such transforms
often allows for easy manipulation of the object mathematically in the feature vector
space so that invariant representations may be established, i.e., normalization may be
made with respect to size, translation, and rotation. Object recognition is now equiva-
lent to recognizing a point, i.e., the feature vector in an N-dimensional space where N is
the number of components in the feature vector, e.g., the number of Fourier coefficients.

Reeves and Prokop (ret 25) have developed an object recognition system that
uses neural nets to identify objects represented by feature vectors. The system also
performs the segmentation required in the feature vector preprocessing. Given an
image the system will segment it using either a threshold type of segmentation or a
Markov field based segmentor as determined by the user. A feature vector will then be
set up using either moments or Fourier descriptors again as determined by the user as
well as the number of terms. The user then specifies the neural network topology, i.e.,
the number of layers and the number of neurons per layer. The model currently set up
is the backpropagation model although this could be replaced - via some programming -
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with other models. The system can then be trained by a given set and then tested
against other image sets. Output is both graphic and tabular. A typical training and test
sequence is shown in figure 15 through 19.

The system has been implemented at the ARDEC facility and its capabilities are
being studied. it will also be used to study the Markov field segmentor which is a recent
development that employs a neural network type structure.

NEW DIRECTIONS
Society of Mind

The sequence of neural networks described above, perceptron, backpropagation,
adaptive resonance and neocognitron, shows a trend of increasing complexity with the
multilayer neocognitron with feedback being the most complex. It is also - at least
based upon the investigation of Grogan and Johnson - the most difficult to tune, that is,
the adjustment of the network parameters for satisfactory operation. Thus while the
training is unsupervised a significant amount of outside intervention is required. This
trend to large and more complicated multifunctional networks (the neocognitron is
claimed to effect not only pattern recognition under position shifts and distortion but also
to segment, restore imperfect patterns and eliminate noise), has recently been criticized
and questioned as the proper and most promising direction for such research to take.
Minsky and Papert (ref 7) have suggested that the study of how the human brain works
suggests that it is not with large muitifunctional neural nets but rather with small simple
nets - even, perhaps, at the ievel of simple perceptrons. They propose the concept of a
society of small agents which individually are extremely limited but when organized are
capable of more than the sum of their parts. Minsky refers to this organization as a-
society of mind and in his book (ref 16) explores the subject in detail. Minsky's presen-
tation is based upon what is referred as a top-down approach. That is, starting with a
particular type of human activity a hierarchy of simple agents will be synthesized - on
paper - that could organize to perform that activity. An example he uses is that of a
child building a tower out of blocks, and reduces this to a tree-like structure of agents
where each agent is of extremely limited capability but together they become a builder.
This sounds simplistic but it is only the introduction. More complicated behavior is
considered by degrees along with the structures and agents that would be needed to
effect such behaviors. In this way, for example, memory is introduced in a way that is
somewhat reminiscent of the adaptive resonance expectation lines. Minsky speaks of
K-lines as activators of the agents that had been involved in the past for some particular
task. When the task comes up again the proper agents are brought into play by that
particular K-line that connects to them. Levels of memory are then brought in by hierar-
chies of K-lines, that is, a K-line activating other K-lines and so on. Another concept

20




introduced is that of frames. The idea here is that a perceptual experience activates
some structures in the brain - some collection of agents that is - that have been ac-
quired previously. By this is meant they represent some interaction with the environ-
ment that has occurred in the past history of the individual. The frame represents a
general form of this experience or ". . . somewhat like an application form with many
blanks or slots to be filled." The blanks are called the terminals and are used as con-
nection points for which present experience can attach information. In this way as-
sumptions are aroused. The activation of the frame carries along with it the points that
must be assumed - filled by default values - until information for the specific points is
available. For example, under the stimulus of a desert battie environment, loud me-
chanical noise and a large shape, the frame corresponding to a tank could be activated.
With this framework the details of friend or foe, armaments, etc. would be the terminal
values to be filled in. Again there can be interactions between frames with more than
one frame being activated. The society of mind, as presented by Minsky, does not get
down to wiring details. It is not a blueprint of brain behavior. Rather it is a theory of
how the mind may work based a good deal on the learning behavior of children and
psychological analysis of behavior. It is not intended to be a final work on the subject
but instead a possible stimulus to new avenues of research.

Neural Darwinism

This is a bottom-up approach. Whereas the top-down approach goes from behav-
ior to structure, the bottom-up approach goes from structure to behavior. That is,
starting with the basics of physiological knowledge a model is developed in accord with
biological principles which hopefully will explain or duplicate human behavior.

G. Edelman (ref 17) has attempted to take what is known about the brain and
demonstrated how it leads to the functioning of the brain as in perception and memory.
He has argued that this must be done without an a priori categorization of the world
since this is not the way the world is presented to the developing brain. The brain, he
argues, develops as a selective system as in the Darwinian system governed by the
principles of selection and that in reality a form of selection occurs rather than what is
called learning. The categorization comes about through selection for the organism'’s
survivatl.

His theory is based on three fundamental claims (ref 26). "(1) During the develop-
ment ot the brain in embryo a highly variable and individua! pattern of connections is
formed between neurons. (2) After birth a pattern of neural connections is fixed in each
individual but certain combinations of connections are selected over others as a result
of the stimuli the brain receives through the senses. (3) Such selection would occur
particularly in groups of brain cells that are connected in sheets, or "maps,” and these
maps "speak” to one another back and forth to create categories of things and events.”
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In this approach the basic unit of selection is the neuronal group, a set of intercon-
nected neurons that may number in the thousands, that in some sense function
together. The critical aspect is the formation of maps and the communication between
such maps, which Edelman refers to as "re-entry." "The purpose of the maps is to
create perceptual categorizations. . ." (ref 17).

Darwin i is a simulation of recognition developed in the early 80's by Edelman and
his colleagues. To again quote Rosenfield (ref 26): "The automaton is the first man-
made device that strictly adheres to the most sophisticated neurophysiological knowl-
edge of our day, and an examination of its functioning provides a sharp contrast to the
computational and PDP approaches. . ." The over all structure is shown schematically
in figure 20. The left channel is a two-layer structure for feature detection both on the
local and non-local level. The right channel is also a two-layer structure but designed to
respond to ccirelations of features that are relatively invariant to translations and rota-
tions of the input. Re-entry between the channels as shown at the bottom permits
integration of the two types of responses.

Darwin Il was followed by Darwin lll which incorporates motor control into the
model so that its response can be evaluated by observation of its motor acts. (Again
this is all simulated. It is a simulated robot not ar . . .al piece of robotic hardware.)
Both models, especially Darwin Ill, are described .n some detail in reference 18).

The two channels in the models have been referred to as visual and tactile
branches (ref 18) so that the circuit is similar to prenosals of sensor fusion that have
been made in automatic target recognition investigations. It should be pointed out that
the use of two channels was not to be interpreted to mean that more than two channels
could not be used. The interaction could be multichannel.

Neural Darwinism or the theory of neuronal group selection as it is also called is a
difficult theory based very strongly on the most advanced neurophysiological
knowledge. The organizations it leads to are quite complicated as can be inferred from
figure 20. This complication is somewhat to be expected since so little is permitted a
priori in the theory, e.g., categorizations or a training supervisor. The goal however is a
rigorous understanding of neural behavior on a physiological basis. This is not neces-
sarily the goal of all researchers in neural networks. Many are problem solvers looking
for new tools to aid them in problem solving. If some of the brains ability can be dupli-
cated to solve a problem there will be no guilt feelings because a strict adherence to
neurophysiological principles have not been maintained.
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CONCLUSIONS

Much has been done in the field of neural networks in the last 50 years or so. Itis
currently an extremely active field. Progress, however, still leaves something to be
desired. In a recent review of the technology with respect to its applications to auto-
matic target recognition (ref 27) it is still spoken of in terms of its potential, what could
be rather than what is now. Similarly in a review with respect to biomedical implications
(ref 28) the conclusion is that it is potentially promising. Minsky and Papert (ref 7) made
the claim (in 1988) that "little of significance had changed since 1969" (1969 saw the
first edition of their book "Perceptrons”). They take a very dim view of backpropagation
methods because they are essentially hill-climbing methods with the attendant local-
extrema problems, and such difficulties increase when the scale of application is in-
creased. This is another complaint about current techniques; that they have only been
applied to small problems, toy problems as some call them, and are not practical for
realistically sized problems. These considerations probably helped in the motivation
towards a society of mind. But while a society of mind is an attempt to simplify it seems
to lead to complicated structures of agents. Eventually wiring diagrams will have to be
produced and these may well be as complicated and troublesome as anything we have
now.

The fact remains, however, that neural networks do exist that are fast, compact,
robust, capable of learning, generalizing and much more. These are, of course our
individual brains. The existence proot is very substantial. The solution is there but it
has yet to be expressed in our mathematics - Von Neumann (ref 29) has said that ". . .
the brain does a new kind of mathematics. . ." - or captured by our analytic or synthesis
techniques. It is encouraging that different approaches have similarities that indicate
some common ground. An example of this is what some call fusion techniques or
multisensor techniques. It has been mentioned above briefly how Edeiman was led to
such multiple channels in his neural Darwinism models. Others are attempting such an
integration using Markov field techniques (ref 30). It is, at least, implicit in Minsky's
work. In other words, Edelman recognizes the need for it working up from basic biologi-
cal principles; Minsky recognizes the need for it working down from psychological
analysis and Bildro, et al. recognizes the need for it on engineering grounds. Similarly
we have the correspondence between the K-lines of society of mind and the expecta-
tion channels of adaptive resonance. Thus while we have investigators going their own
way there are points of convergence between the investigations which may be indica-
tive of some underlying fundamental principles. Thus while from one aspect progress
may appear to be slow, a broader view is not discouraging. While a complete under-
standing of how the brain works may be a golden grail of technology there are still many
benefits to be obtained from a partial understanding, particularly with respect to the
problems of pattern and image recognition.
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At ARDEC the emphasis is on automatic target recognition (ATR) and robotics so
the question is how should neural network research be directed here to obtain maxi-
mum benefits for these endeavors? The answer is multifaceted. First surveillance and
study of the literature should continue to keep abreast of the Iatest developments and to
be able to evaluate them. Second, experimental capability should be developed since,
as explained in the section on experimental work, theoretical analysis in this field re-
quires significant support from simulation. As mentioned in that section an object
recognition system has been implemented at ARDEC. This can be tied in to real world
images through a VICOM system and will allow testing of segmentation methods and
neural network classifiers. At present the system uses backpropagation method. Since
this architecture is modular though, coding for different methods could be programmed
into it. Work has started on using this system. It should be emphasized however that
this is not a parallel system. It is a serial simulation of a parallel system. Third, re-
search should be started into fusion and integration methods pertinent to target recogni-
tion to see how much can be squeezed from such approaches as those of Minsky,
Edelman, and others. Special attention should be given to communication between
networks. This would also involve some simulation and probably a separate simulator
from that mentioned above. And fourth, should be a blank space to allow for any
breakthrough that may occur in the field. More seriously, it should be recognized that
the field is still wide open. An altogether different approach could happen at any time -
or has happened and hasn't been noticed. Nothing is a priori locked out. There should
be enough flexibility to be able to respond to any new techniques or ideas that might
occur.
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Figure 5. Geometry for two-layer perceptron

Figure 6. Two-layer perceptron
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Figure 8. Three-layer perceptron
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Figure 9. Geometry for exclusive "Or"

Figure 10. Network for backpropagation
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Figure 11. More complicated backpropagation network

Figure 12. Feedback for adaptive resonance
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Figure 16. Segmented input image used for training (default)
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Figure 18. Labeled test image (scene 2)
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